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ABSTRACT 

Manoeuvring ability of Offshore Supply Vessel (OSV) is a very critical aspect. An early prediction of vessel 
behaviour will definitely help to improve upon the design. The regular methods available for manoeuvring 
prediction such as free running model test, captive model test etc., are found to be expensive and time 
consuming. As an alternative, the current approach tries a numerical simulation method with parameters 
determined from a database. This study presents the manoeuvring prediction of an OSV which includes the 
development of time domain simulation program by using Matlab Simulink software. Three degrees of 
freedom were considered and applying the Newtonian laws, the equations of motion were framed. Further, 
forces on hull, forces and moments induced by propeller and rudder were also taken into reckoning. Results 
were obtained with inputs of vessel speeds, engine revolutions etc. Validation of the prediction results was 
also carried out by comparing the results with full-scale sea trial data. The prediction results show a good 
agreement with the sea trial data. Applying approximate numerical formula for manoeuvring prediction is seen 
to be a reliable and economic prediction tool at early design stages of such vessels. 
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1.  INTRODUCTION 

Manoeuvring characteristic of an Offshore Supply 
Vessel (OSV) is a very important aspect as her 
mission of operation demands high manoeuvrability 
in order to make sure that it can be operated in 
various situations and locations. In harbour and 
offshore operations and tow and tug activities the 
risk of collision and grounding are high for such 
vessels. A successful manoeuvring is interpreted as 
the ability of the ship to go anywhere, from straight 
ahead without any rudder action to tight turning 
with significant rudder action. 

In general, low speed vessels with high block 
coefficient such as OSVs are known to have bad 
manoeuvring characteristic because of the full hull 
form with small length to beam ration [1]. The ship 
particulars of OSV are shown in Table 1. 

In December 2002, International Maritime 
Organization (IMO) has adopted the Resolution 
MSC.137 (76), Standards for Ship Manoeuvrability. 
These standards were developed to ensure safe 
operation of ships at sea. In order to comply with the 
IMO manoeuvring standards, the ability to predict 
the manoeuvrability of OSV at the design stage is 
important. The fact that it is too late to effect design 
changes after the vessel has been built makes such 

predictions imperative. The complexity in analysing 
manoeuvrability characteristics is due to many 
variables. 

Table 1: Ship particulars 
Particulars Vessel 

LOA 60.8 m 

LBP 54.0 m 

B 14.8 m 

D 5.7 m 

T 4.6 m 

Displacement 2373 tonnes 

Speed 12.5 knots 

Block coefficient 0.705 

Prismatic coefficient 0.72 
 

Firstly, the area and shape of the rudder may be 
mentioned. The flow around the rudder is affected 
by a combination of variables such as the eddy 
currents created by ship’s motion and the propeller 
races. 

Being located partially or as a whole, the rudder 
experiences basic hydrodynamic phenomena of 
stall, cavitation and aeration. During the stall, 
separation occurs resulting in reduction of normal 
flow pressures. These factors are difficult to predict 
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3.  MATHEMATICAL MODEL 

The mathematical model for manoeuvring motion 
can be structured from the equations of motion with 
reference to the co-ordinate system, whose origin is 
the ship’s centre of gravity as shown in Figure 2. 

0y0

0x

ψ

δ
Yv,

Xu,β
U

Nr,
CG

 
Figure 2: Co-ordinate System [4] 

As shown in Figure 2, (U) is the actual ship 
velocity that can be resolved into advance velocity 
(u) and transversal velocity (v).  The ship has also a 
rotation velocity with respect to the z-axis. This axis 
is normal to the XY plane and passes through the 
ship centre of gravity (C.G). (β) is the angle between 
U and the x-axis and it is called drift angle. (Ψ) is 
the ship heading angle and (δ) is the rudder angle. 

In this study, manoeuvrability will be approached 
as a bi-dimensional phenomenon. Two reference 
systems will be used, one of them fixed (Xo, Yo) and 
the other moving with the ship, with its origin at the 
centre of gravity. Yaw motion is supposed to occur 
around this point. In the moving reference, X-axis is 
positive forward and Y is positive starboard. For 
both systems, moving and fixed, angles are positive 
in the clockwise sense. 

3.1 Equations of Motion 
Once the reference systems have been defined, the 

ship is considered as a solid with three degrees of 
freedom: surge, sway and yaw. In accordance with 
these three degrees of freedom, the Newton’s 
Second Law equation is applied to the moving 
reference system of Figure 2 for each motion [4]. 
Interrelating both axes and differentiating the 
Newtonian equations of motion, the dynamical 
model which governs the motion of the ship, can be 
simply written as follows: 
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where: X’, Y’: Dimensionless Surge and Sway force 
acting on a ship, N’: Dimensionless Yaw moment 
acting on a ship, m’, m’x m’y: Dimensionless mass of 
ship, and added mass in x- and y-directions, I’zz: 
Dimensionless moment of inertia of ship in z-axis, 
J’zz: Dimensionless added moment of inertia of ship 
in z-axis, β : Drift angle at the center of gravity C.G. 
[ β = - sin-1(v/U)], r′ : Dimensionless Turning rate [ 
r = dψ/dt ], L, T, U : Ship Length, Ship Draught and 
Ship Speed respectively. 

The superscript {'} in the equations refers to the 
non-dimensional quantities. 

The left hand-side of equations (1) represents the 
inertial terms. The right hand-side represents the 
external forces and moments that act on the ship. 
These forces and moments can be described 
separately into the following components from the 
viewpoint of the physical meaning. The subscripts 
“H”, “P”, and “R” symbolize ship hull, propeller, and 
rudder respectively according to the concept of 
MMG [5] [6]. 

X’ = X’H + X’R + X’P 

Y’ =Y’
H 

+ Y’
R            (2) 

N’ = N’H + N’R 

3.2 Forces and Moments Acting on Hull 
X’H, Y’H and N’H are approximated by the 

following polynomials in terms of β and r' at the 
amidships. The coefficients of the polynomials are 
called hydrodynamic derivatives. The longitudinal 
component of hydrodynamic force (X’H), the lateral 
force (Y’H), and yaw moment (N’H) acting on the 
ship hull are expressed as follows [4]: 

X’H  = { X’βr r’ sinβ + X’uu cos2β } 

Y’H  = { Y’β β + Y’r r’ + Y’ββ β│β│+ Y’rr r’│r’│+ 
(Y’ββr β + Y’βrrr’) βr’ } 

N’H  = { N’β β + N’r r’ + N’ββ β│β│+ N’rr r’│r’│+ 
(N’ββr β + N’βrrr’) βr’ }          (3) 

X’H is consist of hydrodynamic derivates which 
expresses the change of ship resistance due to drift 
angle β = tan-1(-v/u), yaw rate r’, and X’uu which is 
the ship resistance in forward straight motion.  Y’β, 
Y’r , ...., N’ββr are also the hydrodynamic derivatives. 

The Kajima formulae are based on the functions 
of ship length (L), breadth of hull (B), draught (d), 
block coefficient (CB), form factor (K) and aspect 
ratio of ship hull k (k = 2d/L).These formulae were 
derived based on a database involving 15 kinds of 
ships (container, bulk carrier, tanker, general cargo, 
VLCC, car-ferry etc.) and their 48 loading 
conditions [7]. The formulae of individual 
hydrodynamic derivatives for sway and yaw motion 
can be deduced to following equations: 
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5.2 Validation with Full-Scale Sea Trial 
A full-scale manoeuvring sea trial of an OSV was 

carried out and the ship path data was recorded by 
using FURUNO GPS/WAAS Navigator model GP-
32. Ship heading angle are displayed on magnetic 
compass which are mounted onboard. Sea trial data 
for Turning Circle to Port and Starboard are 
recorded in Table 5 and 6 respectively. It shows that 
the sea trial results are smaller than predicted value 
for Advance Distance and Tactical Diameter. 

The discrepancies between predicted and 
measured results can be shown in terms of deviation 
percentage which was calculated as follow: 

100)(Pr(%) X
tMeasuremen

tMeasuremenedictionDeviation −
=

        (8) 

Table 5: Comparison between Prediction and Sea 
trial results for Turning Circle to Port 

Turning 
(Port) Prediction Sea 

trial 
Deviation 

(%) 

Advance 
Distance 

(Mtr) 
188 174 8.0 

Tactical 
Diameter 

(Mtr) 
164 160 2.5 

Table 6: Comparison between Prediction and Sea 
trial results for Turning Circle to Starboard 

Turning 
(Stbd) Prediction Sea 

trial 
Deviation 

(%) 

Advance 
Distance 

(Mtr) 
194 176 10.2 

Tactical 
Diameter 

(Mtr) 
169 157 7.6 

The deviation percentage of Advance Distance 
and Tactical Diameter for Port Turning Circle was 
8.0 % and 2.5 % respectively. Meanwhile the 
deviation percentage for Advance Distance and 
Tactical Diameter for Starboard Turning Circle was 
10.2 % and 7.6 % respectively. The predicted results 
for Port Turning Circle are more accurate than the 
Starboard Turning Circle with the smaller deviation 
percentage. 

6.  CONCLUSION 

Manoeuvring assessment of an Offshore Supply 
Vessel had been successfully performed by using 
numerical simulation method which was developed 
on Matlab Simulink software. The prediction result 
shows that manoeuvring characteristic of an OSV 
meet the requirements stipulated by IMO resolution 
MSC.137 (76), International Maritime Organization 
standards for ship manoeuvrability. Validation with 
full-scale sea trial data gives small deviation to the 
predicted result. This discrepancy may due to 

inaccuracy of estimated hydrodynamic derivatives 
and others external forces which are not taken into 
account. However, the numerical method developed 
in this study can be used as a primary tool in order 
to access OSV manoeuvring characteristic at early 
design stages. This method may be considered as an 
economical and reliable manoeuvring prediction 
method which can estimate manoeuvring 
characteristic without relying on model tests 
(captive or free running test). Although the results of 
prediction tools show a good agreement to the sea 
trial data, the authors suggest that for future work, 
the study should be continued with further 
validation process with other full-scale sea trials 
data and captive model test data. 
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